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Abstract

This research explores the application of archived data from Automated Data Col-
lection Systems (ADCS) to transport planning with a focus on bus passenger travel 
behavior, including Origin-Destination (OD) inference, using London as a case study. 
It demonstrates the feasibility and ease of applying trip-chaining to infer bus pas-
senger OD from smart card transactions and Automatic Vehicle Location (AVL) 
data and is the first known attempt to validate the results by comparing them with 
manual passenger survey data. With the inferred OD matrices, the variations of 
weekday and weekend bus route OD patterns are examined for planning purposes.  
Moreover, based on the inferred OD matrices and the AVL data, alighting times for 
bus passengers also can be estimated. Bus journey stages, therefore, can easily be 
linked. By comparing the interchange time and the connecting bus route’s headway, 
it provides a way to evaluate bus connections.
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Background and Purpose
London has one of the largest bus networks in the world, with more than 6 million 
passengers transported on its 700 routes daily.  A recent report states that “Bus 
usage is growing at its fastest rate since 1946. More than two billion passenger trips 
were made on London’s fleet of more than 8,000 buses in the year to March 2009. 
The number of operated kilometers has also risen to 478 million, the highest since 
1957” (Mayor of London, 2009).

Every five to seven years, a Bus passenger Origin and Destination Survey (BODS) is 
conducted by Transport for London (TfL) for each bus route. This survey provides 
detailed information about passenger travel patterns, including the number of 
people boarding and alighting at each stop, the purpose of travel, the boarding and 
alighting locations for each journey, and how passengers get to the boarding stop 
and from the alighting stop to their final destination. Expansion factors are used to 
account for non-returned survey cards and non-surveyed bus trips. An automated 
database (BODS database) stores survey results, including boardings, alightings, 
and loads at each stop (or stop zone) for each route. BODS is one of the primary 
data systems used by the Bus Network Development Unit at TfL. A limitation of 
this type of survey is that it records passenger travel for only one day per route. 
Recognizing the substantial network growth and the dynamics of demand, supple-
mentary data from other sources also are needed for network planning. Moreover, 
although surveyed passengers are asked for their ultimate origin and destination in 
addition to their travel on the route itself, this information is not generally trans-
ferred from the paper surveys into the BODS database and therefore is not readily 
available to network planners.

In addition to BODS survey data, London bus planners also get timely route-level 
passenger ridership data from Electronic Ticketing Machine (ETM) transactions, 
which are downloaded daily from each bus at the garage. One drawback of this 
data collection method is that this data source only records aggregate ridership for 
each bus trip, while detailed information such as boarding and alighting locations 
for each passenger cannot be obtained directly. 

The Oyster smart card system was launched in London by TfL in December 2003 
as a new ticketing medium (Transport for London). It is now accepted on the 
Underground, buses, the Docklands Light Rail (DLR), Tramlink, and National Rail 
stations. Though the full potential of this data source has not yet been realized 
by London bus network planners, Oyster data are readily available, provide large 
sample sizes, and potentially offer a full network perspective rather than strictly a 
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mode level view. Bagchi and White (2004) summarize the benefits of smart card 
data systems as follows: (1) much larger volumes of individual passenger trip data 
than from manual surveys; (2) the potential to link individual passenger trips to 
individual cards or travelers; (3) continuous trip data covering longer time periods 
than manual surveys, allowing for panel data analysis techniques; and (4) classifica-
tion of different customer market segments using transit services.  

In addition, using Oyster smart card data enables one to link trip segments and to 
determine OD flows across the network. This process can be repeated on a daily basis 
to assess variability in trips and get more accurate estimates of ridership for specific 
days of the week and times of the year. It provides an easier and more reliable way to 
get more detailed passenger behavior information than manual survey data, which 
potentially can help transit agencies improve efficiency and reduce cost. 

Literature Review
Cui (2006) summarized OD estimation techniques using manually-collected data. 
Basically, the OD matrix can be obtained either from surveys or through techniques 
that combine various sources of data. The ever-increasing use of ADCS generates 
new transport data that can be used by service providers for a range of applications. 
Although most ADCS are designed to support specific agency functions, the result-
ing data can be applied to areas far beyond their design purposes. Recent research 
has examined the potential benefits of using ADCS for public transport planning, 
specifically using archived ADCS data to infer OD matrices to assess service perfor-
mance for service planning. Because most Automatic Fare Collection (AFC) systems 
record the bus trip boarding location coarsely at the bus-route level, it is still difficult 
to obtain information about where individual passengers board a bus. Integration 
of the AFC system data, which includes characteristics of each fare card transaction, 
with the AVL system data, which includes vehicle locations, offers a solution through 
matching the vehicle location information with the passenger trip information to 
help transit planners infer individual passenger boarding locations (Cui 2006). 

To infer the destinations for individual passenger trips, Zhao et al. (2007), Cui 
(2006), Trepanier et al. (2007), and Barry et al. (2008) all used trip-chaining methods 
with assumptions similar to those summarized by Zhao et al. (2007): 

There is no private transportation mode trip segment (car, motorcycle, •	
bicycle, etc) between consecutive transit trip segments in a daily trip 
sequence.
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Passengers will not walk a long distance to board at a rail/bus station dif-•	
ferent from the one where they previously alighted.
Passengers end their last trip of the day at the station where they began •	
their first trip of the day. 

Jang (2010) further examined the possibilities of using the ADCS archived data for 
public transport planning in Seoul, South Korea. One feature that distinguishes the 
Seoul ADCS from many other cities is that it records each trip’s entry and exit times 
and locations, as well as the trip chains with interchanges. Based on this dataset, 
Jang analyzed interchange patterns and identified interchange points that needed 
improvement by examining the points where interchange demand exceeded 5,000 
per day and/or the average interchange time exceeded 10 minutes. 

Method Applied in London
The transit passenger OD estimation methodology used in this research builds upon 
the trip-chaining OD estimation method applied in Chicago by Cui (2006). Since dif-
ferent transit agencies may have different data sources with different characteristics, 
the next step is to describe the data sources used in the London application.

TfL ADCS Introduction

Oyster Smart Card Data 
Oyster is the contactless smart card used for public transport for fare payment in 
London.  It has a penetration rate of around 85 percent for all bus passengers in 
London. Oyster smart cards in London are owned by individuals and record every 
transaction the card holder makes while traveling on the public transportation 
system. For the Underground and Overground networks, generally both the time 
and rail station for entry and exit are recorded. However, for buses, only the time 
of passenger boarding and route number are recorded. Several types of analyses are 
possible with the smart card data, including ridership monitoring, revenue estima-
tion, and service performance measurement. The key contribution of this research, 
however, is to develop a methodology to infer the origins and destinations for bus 
passengers in London using the Oyster data and to develop related applications for 
the London bus network.

iBus Data
iBus is a £117m AVL and radio system that aims to help London Bus Services Lim-
ited run more reliable and consistent bus service (Hardy 2009).  The first installa-
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tions took place in March 2007, with system-wide deployment completed in April 
2009. iBus data contain information about the route and trip number as well as the 
direction for each bus trip, and most important, they provide a unique bus stop 
identifier and record the departure time from each stop.

Methodology Based on Oyster and iBus Data
The basic premise is that it should be possible to determine the boarding stop for 
every passenger who uses an Oyster card to board an iBus-equipped bus. For a 
given route and trip, the fare collection timestamp (including the date) from the 
Oyster card is used to search through the iBus dataset to determine the boarding 
stop and vehicle ID. The boarding location of the next trip taken by the passenger 
is then used to infer the alighting stop, where possible. 

Origin Inference 
Since the Oyster system records only the timestamp when an Oyster card user 
boards a specific bus, but no location information, while the iBus AVL system 
records the time when the bus doors open or close at each bus stop for each bus 
run, it is possible to determine the boarding stop by matching the Oyster trans-
action times with the corresponding iBus data. In this case, the origin inference 
procedure is implemented through a custom-built Java program.

Destination Inference 
The destination inferences are based on the trip-chaining method and use the same 
assumptions proposed by Zhao et al. (2007), Cui (2006), Trepanier et al. (2007), and 
Barry et al. (2008), as described above. The destination inference is implemented in 
a custom-designed Java program that reads its inputs from an SQL database.

The procedures to implement this methodology are illustrated in Figure 1. The 
process begins by checking whether the bus fare transaction under examination is 
the only Oyster transaction for that card on that day. If it is, then the trip-chaining 
method cannot be applied and, thus, the trip destination cannot be inferred. Oth-
erwise, it is determined whether this bus fare transaction is the last of the day for 
this card. If it is not, the trip-chaining method is applied by 1) determining whether 
the next fare transaction for this card is on bus or rail; 2) if the next transaction is 
also on bus, the algorithm moves onto the “next trip” rule with a bus lookup table 
sub-procedure; 3) if the next transaction is on rail, the algorithm moves onto the 
“next trip” rule with a rail lookup table sub-procedure. If the fare transaction cur-
rently under examination is the last of the day for that card, then the first transac-
tion of the day is treated as the transaction immediately following this last trip 
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segment so that the “next trip” rule can be applied here to infer the destination of 
this last trip segment.

Figure 1. Process for destination inference

The lookup table mentioned here defines the stops on the bus route under exami-
nation that are closest to the boarding stop of the next transaction.  While the two 
sub-procedures for bus and rail are similar, the London rail and bus networks are 
in two different GIS files, and the lookup tables are generated separately. The “next 
trip” rule is actually the same as assumption 2) listed in the literature review, mean-
ing that travelers start their next trip segment at another station in close proximity 
(within walking distance, for example at most 1 km, or 12 minutes’ walking distance 
at a speed of 5 km/h) to the destination of their initial trip segment. 

OD Inference Results
Five routes in the London bus network are selected to test the OD inference proce-
dures, including two connecting suburban areas, two that terminate in Central Lon-
don and one thast runs through Central London. The results are shown in Table 1.

In general, the inference process has been shown to work fairly well. As shown in 
Table 1, origins can be inferred for more than 90 percent of all the bus passenger 
trips using Oyster cards on the five selected routes, and more than 57 percent of 
these bus passenger trips have both origins and destinations inferred. Such com-
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prehensive information on a majority of bus passengers can provide very useful 
statistics on the use of service in complex transit networks. 

Table 1. Origin and Destination Inference Results

Bus 
Routes

No. of Oyster 
Transactions

No. of Origins 
Inferred

% of Origins 
Inferred

No. of Destinations 
Inferred

% of Destinations 
Inferred

W4 8,585 8,212 95.7% 5,393 62.8%

70 12,074 11,381 94.3% 7,741 64.1%

185 2,4245 22,794 94.0% 13,947 57.5%

307 10,057 9,456 94.0% 6,968 69.3%

329 17,496 17,033 97.4% 13,737 78.5%

Validation
The next step was to validate the inferred origins and destinations for the selected 
bus routes in London. First, the origins inferred from Oyster transactions are com-
pared with the BODS survey results for all the manually-surveyed bus trips. Then, 
the BODS surveyed destinations are compared with the results from the Oyster 
inference methodology for the same bus trips.

Comparison of Boardings for the BODS and Oyster Datasets	
Since the origin inference rates are quite high and BODS does not survey every bus 
passenger (the sample rates for some bus trips are as low as 60 percent), the total 
number of boardings inferred from the Oyster transactions is close to that for the 
BODS survey.  Table 2 summarizes the total number of boardings from BODS and 
Oyster datasets in terms of direction for the surveyed bus trips on Route 185. It shows 
that though Route 185 is one of the busiest bus routes running through Central Lon-
don with a daily ridership of around 26,000, the number of boardings from BODS and 
Oyster for all the surveyed bus trips is quite consistent. Consequently, the number of 
boardings at each stop inferred from the Oyster transaction dataset should be close 
to that from the BODS database if the origin inference method works well.  Figure 2 
demonstrates the boarding location comparison results for this route. 

Table 2. Number of Boardings from BODS and Oyster (Route 185)

Direction No. of BODS Boardings No. of Oyster Boardings No. of Surveyed Bus Trips

Eastbound 7,304 7,911 66

Westbound 6,904 7,386 62
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The total number of boardings for the surveyed trips from BODS is 607 fewer than 
that recorded in the Oyster dataset on Route 185 eastbound, and 482 passengers 
fewer westbound. These relatively large boarding differences between BODS and 
Oyster datasets are mainly due to the low BODS survey sample rates, as Route 185 
is one of the busiest routes in London. Even so, the average difference per bus trip 
is small. As shown in Figure 2, most of the stops where the boarding differences 
are larger than one passenger per trip are close to shopping centers or stops with 
survey problems that are listed in the BODS summary report from TfL.

In general, the number of boardings at each stop from Oyster estimates is very 
close to that from the BODS survey. Some minor differences are caused by the 
low BODS sample rate. Overall, these and similar results from other routes studied 
show that the origin inference methodology works well and thus could be used to 
further infer bus passengers’ destinations as well as to provide more comprehen-
sive and reliable information for transit planners.

Comparison of Alighting Locations between BODS and Oyster Datasets
This section tests the destination inference methodology by comparing the per-
centages of alightings at each stop in the BODS dataset with the Oyster estimates. 
Since destinations could be inferred for only about 60 percent (see Table 1) of all 
the Oyster transactions on the studied bus routes, the number of inferred alight-
ings at each stop from Oyster typically will be far less than the BODS survey result 
on any given bus trip. But it is expected that the percentages of inferred alightings 
from Oyster will be close to the percentages of alightings from the BODS dataset. 
Figure 3 demonstrates these results by comparing the alighting locations, again 
using Route 185 as an example. 

As shown in the above figures, 7,386 alightings were recorded in the BODS sur-
vey, while destinations were inferred for 4,844 Oyster passengers (66% of BODS 
surveyed alightings) on Route 185 northbound. Southbound, destinations were 
inferred for 4,776 Oyster passengers (65% of BODS surveyed alightings). For both 
directions, the number of inferred Oyster alightings is far lower than the BODS sur-
vey results. However, the percentage of inferred alightings from Oyster at each stop 
is very close to the percentage of alightings from the BODS dataset, with the differ-
ences generally within two percent per bus trip. There is a relatively large difference 
(4%) between the BODS dataset and the Oyster estimates at the Catford Shopping 
Center bus stop southbound of Route 185. The BODS validation report provided 
by the BODS survey group in TfL mentioned some problems here, as several issued 
cards were not returned, which contributed to the difference. The other reason is 



www.manaraa.com

141

Bus Passenger Origin-Destination Estimation and Related Analyses

Fi
gu

re
 3

a.
 A

lig
ht

in
g 

lo
ca

ti
on

 c
om

pa
ri

so
n 

fo
r 

R
ou

te
 1

85



www.manaraa.com

Journal of Public Transportation, Vol. 14, No. 4, 2011

142

Fi
gu

re
 3

b.
 A

lig
ht

in
g 

lo
ca

ti
on

 c
om

pa
ri

so
n 

fo
r 

R
ou

te
 1

85



www.manaraa.com

143

Bus Passenger Origin-Destination Estimation and Related Analyses

that passengers might not necessarily get off the bus at the stop that is closest to 
their next boarding stop, especially when the stops are close to a shopping center, 
where people may walk further than usual. Another large difference appears at Vic-
toria Station on Route 185 northbound, which is a major interchange hub and has 
connections with five other bus routes, as well as the Underground and National 
Rail. It is quite possible that the BODS survey did not reach all the passengers at this 
bus stop due to passenger crowding. However, for most of the other stops, if the 
percentage of alightings from the BODS dataset differs greatly from that from the 
Oyster estimates, these differences are generally offset by the differences at adja-
cent stops, as shown by the red circles in Figure 3. As mentioned above, passengers 
might get off the bus one or two stops away from their next boarding stop in order 
to walk and complete errands which our model cannot capture.

Application to Bus Network Planning
The validation has shown that the origin and destination inference process using 
the proposed methodology works well when compared with the BODS manual 
survey results. This section presents several applications using the results from the 
inference process. One of the most significant applications is using the automatic 
OD inference to better understand bus passenger travel patterns on a daily basis. 
Manual surveys are limited by narrow spatial and temporal coverage, while an 
automatic procedure can generate OD matrices for any bus route at any time at 
low marginal cost, as long as the ADCS and inference procedures have been devel-
oped and deployed. 

Daily Load/Flow Profile Variation 
Load/flow profiles are standard graphics showing passenger activity (boardings, 
alightings) and passenger load (or flow past a stop or segment in the case of mul-
tiple trips) along a route by direction. They allow planners to identify locations and 
values of the peak load, as well as underutilized route segments.

Route W4 during the AM Peak (7:00 to 9:30 AM) is chosen here as an example of 
how the daily load/flow profile varies over five successive weekdays. Figure 4 shows 
that there are large variations in the load/flow profile and specifically in the peak 
loads, even within the same week.
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Figure 4a. Daily load/flow variation along Route W4 during AM peak

Figure 4b. Daily load/flow variation along Route W4 during AM peak

Since the OD information can be obtained for every day from the ADCS archived 
data, the load/flow profile differences for weekdays and weekends also can be 
studied. Figure 5 demonstrates the load/flow profile variations for a Friday and 
Saturday on Route 307. Generally, the load on Saturday is much lower than that on 
Friday, and the peak load point changes in the AM peak. On Friday, the peak load 
point is between Glyn Road (GR) and Crown Road (CR) while on Saturday, the peak 
load point is between Enfield Town Station (ETS), Trent Park Golf Course (TPGC) 
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and Oakwood Station (OS). It is quite likely that more passengers will visit the Golf 
Course on Saturday, which makes the load/flow around this bus stop higher than at 
other bus stops. In the PM peak (16 to 18:30), as shown by the circle in Figure 5(b), 
the peak load points are also around the Trent Park Golf Course bus stop and the 
Oakwood Station, but the loads/flows around these stops are even larger than on 
Friday. It is also likely that more people may transfer at Oakwood Station to other 
routes or the Underground on weekends for non-work trip purposes.

Figure 5a. Daily load/flow profiles for Route 307

Figure 5b. Daily load/flow profiles for Route 307
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Interchange Time Analysis
Interchanges affect the attractiveness of public transportation and making inter-
changes less burdensome is a critical consideration in public transport planning. 
Improving the level of service at interchange locations would enhance the overall 
quality of public transportation services. Both practitioners and researchers tend 
to pay most attention to the initial waiting experience and to in-vehicle travel for 
their obvious effects on ridership, but less work has been done on interchanges 
between segments of a linked journey (Guo and Wilson, 2010). However, reducing 
the out-of-vehicle times can help make public transit more attractive resulting in 
ridership increases. In this research, bus passenger alighting locations are inferred 
from the ADCS archived data. Also, since iBus AVL data provide information 
about the observed departure time for each bus trip at each stop, by matching 
the inferred alighting locations with the iBus AVL data, the alighting time for each 
individual passenger trip can be estimated. Hence, the interchange time can be cal-
culated more accurately as the difference between the subsequent trip’s boarding 
time and the previous trip’s alighting time.

Taking Route 185 as an example, based on the Oyster transactions, Route 176 is 
found to be the most frequently used connecting route for passengers originating 
from Route 185, with 15 interchange stops for the parallel segments. The median 
interchange time for passengers from Route 185 to Route 176 is five minutes. The 
most frequently used connecting stop on Route 176 is the Forest Hill Station (a 
stop shared by these routes, so interchange times for transfers at this stop do not 
include walking time, and thus are actual waiting times), with seven minutes as 
the median interchange time for passengers originating from Route 185. Transit 
planners often use half the headway of the connecting bus route as the estimated 
waiting time, but there are no field data to support such theory. The analysis in this 
research supports this assumption that the actual waiting time is approximately 
half the headway of the connecting route, as shown in Figure 6. In this figure, the 
size of each dot indicates the number of interchange passengers and the color indi-
cates the scheduled headway of the connecting route. By comparing the median 
interchange time with the headway of the connecting routes (the legend on the 
right side provides the route ID of the connecting routes), the passenger experience 
provided by those bus-to-bus connections can be evaluated further. For example, 
the dots in the blue circle under the red diagonal line suggest that these bus routes 
provide good (or at least better than random) connecting services while the dot 
in the blue circle above the red diagonal line suggest that those bus routes (Routes 
P13 and 356) provide poorer connecting services. Thus targeted improvements 
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could be made to coordinate the timetable. For this example on Route 185, the 
connecting services are fairly good as the median interchange times are approxi-
mately half the headway of the connecting routes. 

Figure 6. Relationship between connecting routes’ headway  
and interchange time (Route 185)

Conclusions 
This research has examined the feasibility of using the ADCS archived data to 
analyze bus passengers’ travel behavior using data from TfL as an example. More 
reliable and comprehensive information enables public transport managers and 
planners to understand both their systems and customers more thoroughly, which 
may lead to significant changes in the effectiveness and efficiency of public transit 
services in the long term. 

The first step in this process is to infer the origins for bus passengers by matching 
the smart card boarding transaction times with the AVL data. It then implements 
the trip-chaining methodology to infer each bus passenger’s alighting location. The 
origin and destination inference results were then compared with the BODS man-
ual survey data, which is the first known attempt to validate the automatic infer-
ence results against large-scale survey results. Finally, this research demonstrates 
potential applications of the ADCS archived data to bus network planning, with 
a focus on daily ridership variations and interchange time analysis, and it extends 
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the measurement of mobility and service performance to weekend days, for which 
transit planners generally have very little information (Wang 2010). 

Recommendations for Future Research
Some directly-related topics for further research are recommended below:

Disaggregate analysis of both supply and demand. On the supply side, there •	
is the potential to “optimize” equipment use by analyzing operational data 
and passenger-load information. By combining these operational perfor-
mance data with better demand side data, using straightforward applications 
such as those described in this research, it should eventually be possible to 
improve our understanding of the behavior of public transport users. The 
analysis of individual user behavior will provide additional information to 
transit planners on the habits of users: departure times, preferred origins 
and destinations, preferred routes, etc.
Linking system usage to home addresses, access behavior also can be better •	
understood, for instance how individuals change their behavior with weather 
or with the impact of improved customer information systems. 
Using cluster analysis, different user patterns can be identified and clustered •	
into similar groups. Currently, the automatically collected data do not con-
tain information about travel purposes, but by identifying typical temporal 
patterns of boardings for smart cards of similar classes, it may be possible 
to partition card users into commuters, students and possibly seniors who 
travel less than others. If the smart card number is tracked over time, the 
survival model of transit users and retention of different ticket types can be 
analyzed, which would provide longitudinal information about the network 
use and better information for fare planning and revenue analysis. 
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